

Design of Basic Computer

- The basic computer consists of the following hardware components
 - 1. A memory unit with 4096 words of 16bits
 - 2. Nine registers : AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
 - 3. Seven F/Fs : I, S, E, R, IEN, FGI, and FGO
 - 4. Two decoder in control unit : 3 x 8 operation decoder, 4 x 16 timing

decoder

- 5. A 16-bit common bus
- 6. Control Logic Gates :
- 7. Adder and Logic circuit connected to the AC input
- Control Logic Gates
 - 1. Signals to control the inputs of the nine registers
 - 2. Signals to control the read and write inputs of memory
 - 3. Signals to set, clear, or complement the F/Fs
 - 4. Signals for $S_2 S_1 S_0$ to select a register for the bus
 - 5. Signals to control the AC adder and logic circuit

KQ(t+1

Register Control : AR

- Control inputs of AR : LD, INR, CLR
- Find all the statements that change the AR

	in Tab. 5-6 🗩	$R'T_0: AR \leftarrow PC$
	 Control functions 	$R'T_1: AR \leftarrow IR(0-11)$
1	$LD(AR) = R'T_0 + R'T_1 + D_7'IT_3$	$D_7'IT_3: AR \leftarrow M[AR]$
┥	$CLR(AR) = RT_0$	$RT_0: AR \leftarrow 0$
	$INR(AR) = D_5T_4$	$D_5T_4: AR \leftarrow AR + 1$

Memory Control : READ

- Control inputs of Memory : **READ**, WRITE $\sim M[AR] \leftarrow ?$
- Find all the statements that specify a *read operation* in Tab. 5-6 \leq ? \leftarrow
- Control function

 $READ = R'T_1 + D_7'IT_3 + (D_0 + D_1 + D_2 + D_3)T_4$

Bus Control

Design of Accumulator Logic

Circuits associated with Accumulator

-				
	AND with DR	$D_0T_5: AC \leftarrow AC \wedge DR$		
Memory reference	ADD with DR	$D_1T_5: AC \leftarrow AC + DR$		
	Transfer from DR	$D_2T_5: AC \leftarrow DR$		
I/O reference	Transfer from INPR	$pB_{11}: AC(0-7) \leftarrow INPR$		LD
	Complement			
	Shift right	$rB_9: AC \leftarrow AC$		
Register reference	Shift left	$rB_7: AC \leftarrow shr AC, AC(15) \leftarrow E$		
	Clear	$rB_6: AC \leftarrow shk AC, AC(0) \leftarrow E$		
	Increment	$rB_{11}: AC \leftarrow 0$	→	CLR
		$rB_5: AC \leftarrow AC + 1$	>	INR

The control function for the clear operation is rB11 where r=D7I'T3 AND B11 =IR(11).

- Adder and Logic Circuit : The adder and logic circuit is devided into 16 stages with each stage corresponding to one bit of AC.
- Each stage has a JK flip flop, 2 OR gate , and two AND gate.
- The LD input is connected to the input of AND Gate.
- Note: one stage of Adder and logic ckt consist of seven AND Gate, One OR Gate and a FULL ADDER(FA).
- The AND operation is achieved with ANDing AC(i) with the corresponding bit in the DR(i).

